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ABSTRACT
Large-scale collaborative planning is critical in many do-
mains such as sensor networks and disaster rescue. In large,
heterogeneous multiagent teams, agents must work together
to create plans that maximize the effectiveness of the team as
a whole; coordinating actions to increase efficiency while also
avoiding potentially dangerous interactions between team-
mates. Recognizing the utility of information to agents in
teams and delivering it efficiently across a team has also been
the focus of much research, with proposed approaches rang-
ing from classic flooding, gossiping, to channel filtering. We
combine these two fields of research to study the problem
of information sharing mechanisms to distribute planning in
both certain and uncertain environments.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Coherence and Coordination, Multiagent Systems;
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H.1.1 [Models and Principles]: Systems and Information
Theory—Value of Information
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1. INTRODUCTION
Exciting applications are emerging that involve large, het-

erogeneous teams acting in complex environments. Exam-
ples include search and rescue, disaster response, and mili-
tary surveillance. In such domains, team members must en-
gage in cooperative planning to execute coordinated tasks.
Often, there exist dramatic differences in utility depending
on the outcome, e.g. when a bad sequence of actions will
lead to the destruction of a robot and a good sequence of
actions will lead to saving a human life.

In search and rescue situations, for example, there can be
limited access to certain sections of a disaster site (e.g. a
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collapsed building). When teams of robotic agents are de-
ployed into these environments, they cannot simply use their
own locally optimal plans. An agent following an indepen-
dent plan might inadvertently block access to a portion of
the environment for some other agent, hampering the rescue
operations of the team overall. However, teammates often
have limited information about which, if any, team mem-
bers require particular pieces of information. Thus, each
team member making its own local plan needs to determine
whether and where to send resulting information with only
limited knowledge of who might need it and how important
it is to them. At the same time, team members must also
be careful about what they communicate as the volume of
incoming information is typically dramatically higher than
available communication bandwidth.

Much previous research has been done on the problem of
cooperative planning and decision making, both with and
without uncertainty. Unfortunately many of the proposed
approaches do not scale to teams of hundreds of robots in
constrained environments. We examine two domains, path
planning and Dec-POMDPs, where reward shaping meth-
ods are showing promise for solving these problems for large
teams.

2. DISTRIBUTED PATH PLANNING
In path planning problems, a team of agents is given some

set of start locations must find collision-free paths through
time and space to reach a corresponding set of goal loca-
tions on a map that may contain obstacles and varying
traversal costs. One approach to this problem which has
been shown effective for reasonably large teams is prior-
itized planning [3]. In this approach, robots sequentially
plan paths according to a prioritization function. However,
this means robots must plan paths in order, resulting in a
linear increase in planning time with the number of robots.
Prioritized planning is also therefore centralized, creating a
potential computational and communication bottleneck, as
well as a single point of failure.

However, in many domains, the strict ordering of sequen-
tial planning is likely to be unnecessarily expensive. In most
cases, not all robots need to avoid all other robots. Online
prioritized approaches such as [1] and [2] take advantage of
this property by determining sets of robots that need to be
planned sequentially by detecting interactions via local ob-
servations. We present an approach that distributes priori-
tized planning, allowing each robot to plan at the same time,
then look for collisions between paths and require lower pri-
ority robots to replan. The intuition behind this is that if
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Figure 1: An abstract rescue domain where an aid
agent (w/ bag) plans to reach a victim (the square
symbol in lower left), possibly assisted by a debris
clearing agent (w/ shovel). The aid agent may reach
the victim faster if debris in its path is cleared first,
but both robots will be penalized if they collide in
a narrow corridor (cell w/ black borders).

robot paths are not dependent on all other paths, the num-
ber of replanning iterations might be quite low and over-
all planning time will be reduced because no single node
needs to plan for each robot in sequence. We prove that
distributing the planning in this way still converges to the
same result as the centralized planner. Experimental results
support the intuition, showing a dramatic reduction in the
number of planning iterations. However, because the length
of an iteration for the distributed algorithm is governed by
the slowest planner, there is not always a large gain in overall
planning time.

3. DISTRIBUTED POMDP SOLVING
Decentralized Markov Decision Problems(MDPs) and De-

centralized Partially Observable MDPs accurately represent
the decision making problem in domains where there ex-
ists uncertainty about the outcome of actions and dramatic
differences in utility depending on the outcome, e.g. when
a bad sequence of actions will lead to the destruction of
a robot and a good sequence of actions will lead to rescu-
ing a human victim. However, the computational complex-
ity involved in solving DEC-MDP/DEC-POMDP models is
NEXP, hence most approaches for solving these models have
been restricted to solving decision problems for two or three
agents.complexity

Recently, a model shaping approach called TREMOR was
proposed in [4] to solve a sub-class of DEC-POMDPs. By ex-
ploiting dynamic locality in interactions of agents, TREMOR
was able to scale to problems with ten agents. Dynamic lo-
cality in interactions assumes that interactions happen pri-
marily in certain “coordination locales”. For example, two
robots interacting only when they collide in a narrow corri-
dor. One example of such a domain is seen in Figure 1. How-
ever, TREMOR cannot scale further as the decision problem
for individual agents increases in complexity or when more
agents are introduced into the environment.

We present Large-scale TREMOR (L-TREMOR), a dis-
tributed version of TREMOR that focuses computation on
the most valuable interactions, to allow scale-up to hundreds
of agents. The key to distributing TREMOR is being able to
compute interaction values, without having to perform the
exponential operation of comparing individual agent poli-
cies. In L-TREMOR, after computing the individual policy,
each agent creates a list of the coordination locales (CLs)
that have non-zero probability of occurrence and orders that
list by the expected reward (or cost) of another agent be-
ing in that CL. For example, if an agent’s local policy took
it into a narrow corridor with high probability and another
agent being there at the same time would lead to a dra-
matic drop in its expected utility, that CL will appear near
the top of the list. The highest value CLs are communicated
to other agents who compare them against their own policy
to find CLs with high value (or cost) interactions. Those are
communicated back to the sending agent which uses them
to shape rewards and recompute, as in TREMOR. Notice
that this mechanism differs conceptually from TREMOR
because instead of blindly comparing whole policies for in-
teractions it focuses the search towards more likely and more
important interactions. While this can potentially reduce
solution quality by a small amount, it leads to dramatic
computational and communication savings. A distributed,
market-based role reallocation algorithm replaces the cen-
tralized branch and bound algorithm in TREMOR.

4. CONCLUSIONS
We investigate two approaches to scale distributed plan-

ning problems into the hundreds of agents. Preliminary
work in analytical and empirical studies suggest that in these
domains, using intelligent information sharing coupled with
properly constructed reward shaping methods may provide
competitive performance to centralized algorithms while im-
proving scalability and reducing network and computational
costs. We are currently attempting to unify these results into
a generalized model of the performance of reward-shaping
and intelligent information dissemination in distributed plan-
ning problems.
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